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• What is a computer? a computer is a machine designed 
to process, store, and retrieve data. 

• What is a computer architecture refers to those 
attributes of a system visible to a programmer or, put 
another way, those attributes that have a direct impact 
on the logical execution of a program. 

• What is a Computer organization refers to the operational units and 
their interconnections that realize the architectural specifications. 



Introduction 

3 

• Examples of architectural attributes include the instruction set, the 

number of bits used to represent various data types (e.g., numbers, 

characters), I/O mechanisms, and techniques for addressing memory. 

• Examples of organizational attributes include those hardware details 

transparent to the programmer, such as control signals; interfaces 

between the computer and peripherals; and the memory technology 

used. 
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• Data that process by computer may be numbers in a spreadsheet, 
characters of text in a document, dots of color in an image, waveforms 
of sound, or the state of some system, such a CD player. 

• All data is stored in the computer as numbers. 

• The computer manipulates the data by performing operations on the 
numbers. 
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Computer System 
 

• A computer system is composed of many parts, both hardware and 
software. 

• At the heart of the computer is the processor, the hardware that executes 
the computer programs. 

• The computer also has memory, often several different types in one 
system. The memory is used to store programs while the processor is 
running them, as well as store the data that the programs are 
manipulating. 

• The computer also has devices for storing data, or exchanging data with 
the outside world. 
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Computer System 
 

• The software controls the operation and 

functionality of the computer. There are many 

“layers” of software in the computer. Typically, 

a given layer will only interact with the layers 

immediately above or below it. 

Software layers 
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Software layers 
 

• At the lowest level ‘firmware’, there are programs that are run by the 
processor when the computer first powers up. These programs initialize 
the other hardware subsystems to a known state and configure the 
computer for correct operation. This software, because it is permanently 
stored in the computer’s memory, is known as firmware . 

• The bootloader is located in the firmware. The bootloader is a special 
program run by the processor that reads the operating system from disk 
(or nonvolatile memory or network interface) and places it in memory 
so that the processor may then run it. 
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Software layers 
 

• Above the firmware, the ‘operating system’ controls the operation of 
the computer. It organizes the use of memory and controls devices such 
as the keyboard, mouse, screen, disk drives, and so on. It is also the 
software that often provides an interface to the user, enabling her to run 
application programs and access her files on disk. 

• At the highest level, the ‘application software’ constitutes the programs 
that provide the functionality of the computer. Everything below the 
application is considered system software. 
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Processors 
• The processor is the most important part of a computer, the component around which everything else is centered. 

• The processor is the computing part of the computer. 

• The processor is an electronic device capable of manipulating data (information) in a way specified by a 

sequence of instructions. 

• The instructions are also known as opcodes or machine code. 

• A sequence of instructions is what constitutes a program. 

• Each type of processor has a different instruction set, meaning that the functionality of the instructions varies. 

• Processor instructions are often quite simple, such as “add two numbers” or “call this function.” In some 

processors, however, they can be as complex and sophisticated as “if the result of the last operation was zero, 

then use this particular number to reference another number in memory, and then increment the first number 

once you’ve finished.” 

• There are four main components of processor: Control unit: Controls the operation of the CPU and hence the 
computer, Arithmetic and logic unit (ALU): Performs the computer’s data processing functions, Registers: Provides 
storage internal to the CPU, CPU interconnection: Some mechanism that provides for communication among the 
control unit, ALU, and registers. 
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• The processor alone is incapable of successfully performing any tasks. 
It requires memory (for program and data storage), support logic, and at 
least one I/O device (“input/output device”) used to transfer data 
between the computer and the outside world. 

 

Basic computer system 
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• The memory of the computer system contains both the instructions that 
the processor will execute and the data it will manipulate. 

• The memory of a computer system is never empty. It always contains 
something, whether it be instructions, meaningful data, or just the 
random garbage that appeared in the memory when the system powered 
up. Instructions are read (fetched) from memory, while data is both read 
from and written to memory 

 

Data flow 
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• This form of computer architecture is known as a Von Neumann 
machine, named after John Von Neumann. 

• Von Neumann computers are what can be termed control-flow 
computers. The steps taken by the computer are governed by the 
sequential control of a program. In other words, the computer follows a 
step-by-step program that governs its operation. 
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A classical Von Neumann machine has several distinguishing 
characteristics: 

• There is no real difference between data and instructions: A processor 
can be directed to begin execution at a given point in memory, and it 
has no way of knowing whether the sequence of numbers beginning at 
that point is data or instructions. 

• Data has no inherent meaning: There is nothing to distinguish between 
a number that represents a dot of color in an image and a number that 
represents a character in a text document. Meaning comes from how 
these numbers are treated under the execution of a program. 
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A classical Von Neumann machine has several distinguishing 

characteristics: 

• Data and instructions share the same memory: This means that 

sequences of instructions in a program may be treated as data by another 

program. A compiler creates a program binary by generating a sequence 

of numbers (instructions) in memory. 

• Memory is a linear (one-dimensional) array of storage locations: The 

processor’s memory space may contain the operating system, various 

programs, and their associated data, all within the same linear space. 
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• Each location in the memory space has a unique, sequential address. 
The address of a memory location is used to specify (and select) that 
location. The memory space is also known as the address space , and 
how that address space is partitioned between different memory and I/O 
devices is known as the memory map . 

• The address space is the array of all addressable memory locations. In 
an 8-bit processor (such as the 68HC11) with a 16-bit address bus, this 
works out to be 216 = 65,536 = 64K of memory. Hence, the processor is 
said to have a 64K address space. Processors with 32-bit address buses 
can access 232 = 4,294,967,296 = 4G of memory. 
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• Some processors, notably the Intel x86 family, have a separate address space 
for I/O devices with separate instructions for accessing this space. This is 
known as ported I/O . However, most processors make no distinction between 
memory devices and I/O devices within the address space. I/O devices exist 
within the same linear space as memory devices, 
and the same instructions are used to access each. 
This is known as memory-mapped I/O. Memory-
mapped I/O is certainly the most common form. 
Ported I/O address spaces are becoming rare, and 
the use of the term even rarer. 

 

Ported versus memory-mapped 

I/O spaces 
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• The main deviation from this is the Harvard architecture , in which 
instructions and data have different memory spaces with separate 
address, data, and control buses for each memory space. This has a 
number of advantages in that instruction and data fetches can occur 
concurrently, and the size of an instruction is not set by the size of the 
standard data unit (word). 

 

Harvard architecture 



 

18 

Buses 
 

• A bus is a physical group of signal lines that have a related function. Buses allow for the 
transfer of electrical signals between different parts of the computer 
system and thereby transfer information from one device to another. 
For example, the data bus is the group of signal lines that carry data 
between the processor and the various subsystems that comprise the 
computer. 

• The “width” of a bus is the number of signal lines dedicated to 
transferring information. For example, an 8-bit-wide bus transfers 8 
bits of data in parallel. 

• The majority of processors available today (with some exceptions)
 use the three-bus system architecture.  

• The three buses are the address bus , the data bus, and the control bus.                                                 

 

   Three-bus system 
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• The data bus is bidirectional, the direction of transfer being determined by the processor. 

• The address bus carries the address, which points to the location in memory that the 
processor is attempting to access. It is the job of external circuitry to determine in which 
external device a given memory location exists and to activate that device. This is known 
as address decoding . 

• The control bus carries information from the processor about the state of the current 
access, such as whether it is a write or a read operation. The control bus can also carry 
information back to the processor regarding the current access, such as an address error. 
Different processors have different control lines, but there are some control lines that are 
common among many processors. The control bus may consist of output signals such as 
read, write, valid address, etc. A processor usually has several input control lines too, such 
as reset, one or more interrupt lines, and a clock input. 
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• Operations performed by a processor, such as fetching an instruction, decoding the 
instruction, performing an arithmetic operation, and so on, are governed by a system clock. 

• Typically, all operations begin with the pulse of the clock. Thus, at the most fundamental 
level, the speed of a processor is dictated by the pulse frequency produced by the clock, 
measured in cycles per second, or Hertz (Hz). 

• Typically, clock signals are generated by a quartz crystal, which generates a constant signal 
wave while power is applied. This wave is converted into a digital voltage pulse stream (1 
or 0) that is provided in a constant flow to the processor circuitry. 

• For example, a 1-GHz processor receives 1 billion pulses per second. 

• The rate of pulses is known as the clock rate, or clock speed. One increment, or pulse, of 
the clock is referred to as a clock cycle, or a clock tick. The time between pulses is the 
cycle time. 
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• The clock rate is not arbitrary, but must be appropriate for the physical layout 
of the processor. 

• Actions in the processor require signals to be sent from one processor 
element to another. 

• The execution of an instruction involves a number of discrete steps, such as 
fetching the instruction from memory, decoding the various portions of 
the instruction, loading and storing data, and performing arithmetic 
and logical operations. 

• Thus, most instructions on most processors require multiple clock cycles to 
complete. 

• Some instructions may take only a few cycles, while others require dozens. 
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• A processor is driven by a clock with a constant frequency f or, equivalently, a constant 
cycle time Ƭ , where Ƭ=1Τ𝑓. Define the instruction count, Ic, for a program as the number 
of machine instructions executed for that program until it runs to completion or for some 
defined time interval. An important parameter is the average cycles per instruction CPI for 
a program. If all instructions required the same number of clock cycles, then CPI would 
be a constant value for a processor. However, on any give processor, the number of clock 
cycles required varies for different types of instructions, such as load, store, branch, and 
so on. Let CPIi be the number of cycles required for instruction type i. and Ii be the number 
of executed instructions of type I for a given program. Then we can calculate an overall 
CPI as follows: 

       σ𝑖𝑛=1 𝐶𝑃𝐼𝑖× 𝐼𝑖 

 CPI= 

𝐼𝑐 
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• A common measure of performance for a processor is the rate at which 
instructions are executed, expressed as millions of instructions per 
second (MIPS), referred to as the MIPS rate. We can express the MIPS 
rate in terms of the clock rate and CPI as follows: 
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• For example, consider the execution of a program which results in the execution 
of 2 million instructions on a 400-MHz processor. The program consists of four 
major types of instructions. The instruction mix and the CPI for each instruction 
type are given below based on the result of a program trace experiment: 

Instruction Type CPI Instruction Mix 

Arithmetic and logic 1 60% 

Load/store with cache hit 2 18% 

Branch 4 12% 

Memory reference with cache miss 8 10% 

• The average CPI when the program is executed on a uniprocessor with the above 
trace results is CPI= 0.6+ (2× 0.18)+ (4 ×0.12) +(8× 0.1) =2.24. The corresponding 
MIPS rate is (400 × 106)/ (2.24× 106)≈ 178. 
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• The CPU program execution time on the computer R1 for example: 
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Processor operation 
 

• There are six basic types of access that a processor can perform with external chips. The 
processor can: 

1. Write data to memory. 

2. Write data to an I/O device. 

3. Read data from memory. 

4. Read data from an I/O device. 

5. Read instructions from memory. 

6. Perform internal manipulation of data within the processor. 

• In many systems, writing data to memory is functionally identical to writing data to an I/O device. 
Similarly, reading data from memory constitutes the same external operation as reading data from 
an I/O device, or reading an instruction from memory. In other words, the processor makes no 
distinction between memory and I/O. 

• The internal data storage of the processor is known as its registers . The processor has a limited 
number of registers, and these are used to hold the current data/operands that the processor is 
manipulating. 
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• The Arithmetic Logic Unit (ALU) performs the internal arithmetic 
manipulation of data in the processor. The instructions that are read and 
executed by the processor control the data flow between the registers and 
the ALU. The instructions also control the arithmetic operations 
performed by the ALU via the ALU’s control inputs. 

• Whenever instructed by the processor, the ALU performs an operation 
(typically one of addition, subtraction, NOT, AND, OR, XOR, shift 
left/right, or rotate left/right) on one or more values. These values, called 
operands , are typically obtained from two registers, or from one register 
and a memory location. The result of the operation is then placed back 
into a given destination register or memory location. The status 

outputs indicate any special attributes about the operation, such as whether 
the result was zero, negative, or if an overflow or carry occurred. Some processors have 
separate units for multiplication and division, and for bit shifting, providing faster 
operation and increased throughput. 

 

ALU block diagram  
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• In the binary number system, the numbers can be represented with just 
the digits zero and one. 

• For purposes of computer storage and processing, however, we do not 
have the benefit of minus signs and periods. 

• Only binary digits (0 and 1) may be used to represent numbers. 

• In general, if an n-bit sequence of binary digits is interpreted as an 
unsigned integer A, its value is 
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• Sign-Magnitude Representation: 

 

• One’s complement Representation: 

A =σ𝑛𝑖=−012𝑖𝑎𝑖- (2𝑛−1)𝑎𝑛−1 

• Two’s complement Representation: 

A =σ𝑛𝑖=−012𝑖𝑎𝑖- (2𝑛)𝑎𝑛−1 

+18     = 00010010 

- 18     = 11101101 (One’s complement)  

  

+18     = 00010010 

- 18     = 11101110 (Two’s complement)  
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• Parallel processing is a term used to denote a large class of techniques that are used to 
provide simultaneous data-processing tasks for the purpose of increasing the 
computational speed of a computer system. Instead of processing each instruction 
sequentially as in a conventional computer, a parallel processing system is able to perform 
concurrent data processing to achieve faster execution time. 

• Pipelining is a technique of decomposing a sequential process into sub operations, with 
each subprocess being executed in a special dedicated segment that operates concurrently 
with all other segments. 

• Perhaps the simplest way of viewing the pipeline structure is to imagine that each segment 
consists of an input register followed by a combinational circuit. The register holds the 
data and the combinational circuit performs the sub operation in the particular segment. 
The output of the combinational circuit in a given segment is applied to the input register 
of the next segment. 

• A clock is applied to all registers after enough time has elapsed to perform all segment 
activity. In this way the information flows through the pipeline one step at a time. 
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• Suppose that we want to perform the combined multiply and add 
operations with a stream of numbers. Ai * Bi + Ci for i=1,2,3,……7 

 

Pipeline processing 
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• Now consider the case where a k-segment pipeline with a clock cycle time 
tp is used to execute n tasks. The first task T1 requires a time equal to k tp 
to complete its operation since there are k-segments in the pipe. The 
remaining n-1 tasks emerge from the pipe at the rate of one task per clock 
cycle and they will be completed after a time equal to (n-1) tp. Therefore, to 
complete n tasks using a k-segment pipeline requires k+(n-1) clock cycles. 

• The next Figure shows four segments and six tasks. The time required to 
complete all operations is 4 + (6 -1) = 9 clock cycles. 
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• Next consider a nonpipelined unit that performs the same operation 
and takes a time equal to tn to complete each task. The total time 
required for n tasks is n*tn. The speed up of a pipeline processing over 
an equivalent nonpipelined processing is defined by the ratio. 

  

• As the number of tasks increases, n becomes much larger than k - 1, and k + 
n — 1 approaches the value of n. Under this condition, the speedup becomes. 
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• To clarify the meaning of the speedup ratio, consider the following 
numerical example. Let the time it takes to process a sub operation in 
each segment be equal to tp=20ns. 

• Assume that the pipeline has k=4 segments and executes n=100 tasks 
in sequence. The pipeline system will take (k+n-1)tp = 
(4+99)*20=2060 ns to complete. Assuming that tn=ktp=4*20=80ns, a 
non pipelined system requires nktp=100*80=8000 ns to complete the 
100tasks. The speed up ratio is equal to 8000/2060=3.88. As the 
number of tasks increases, the speed up will approach 4, which is equal 
to the number of segments in the pipeline. If we assume that tn=60ns, 
the speed up becomes 60/20=3. 
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Interrupts 
 

• Interrupts (also known as traps or exceptions in some processors) are a technique of diverting the 
processor from the execution of the current program so that it may deal with some event that has 
occurred. Such an event may be an error from a peripheral, or simply that an I/O device has finished 
the last task it was given and is now ready for another. An interrupt is generated in your computer 
every time you type a key or move the mouse. 

• Interrupts free the processor from having to continuously check the I/O devices to determine 
whether they require service. Instead, the processor may continue with other tasks. The I/O devices 
will notify it when they require attention by asserting one of the processor’s interrupt inputs. 

• Interrupts can be of varying priorities in some processors, thereby assigning differing importance 
to the events that can interrupt the processor. 

• the processor is servicing a low-priority interrupt, it will pause it in order to service a higher-priority 
interrupt. However, if the processor is servicing an interrupt and a second, lower-priority interrupt 
occurs, the processor will ignore that interrupt until it has finished the higher-priority service. 
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Interrupts 
 

When an interrupt occurs: 

• The usual procedure is for the processor to save its state by pushing its registers and program 
counter onto the stack. 

• The processor then loads an interrupt vector into the program counter. 

• The interrupt vector is the address at which an interrupt service routine (ISR) lies. 

• Loading the vector into the program counter causes the processor to begin execution of the ISR, 
performing whatever service the interrupting device required. 

• The last instruction of an ISR is always a return from interrupt instruction. This causes the 
processor to reload its saved state (registers and program counter) from the stack and resume its 
original program. 

Processors with shadow registers use these to save their current state, rather than pushing 
their register bank onto the stack. This saves considerable memory accesses (and therefore 
time) when processing an interrupt. 
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Types of interrupts (Hardware interrupts) 
 

• There are two ways of telling when an I/O device (such as a serial controller or a disk controller) 
is ready for the next sequence of data to be transferred. The first is busy waiting or polling , where 
the processor continuously checks the device’s status register until the device is ready. This wastes 
the processor’s time but is the simplest to implement. For some time-critical applications, polling 
can reduce the time it takes for the processor to respond to a change of state in a peripheral. 

• A better way is for the device to generate an interrupt to the processor when it is ready for a transfer 
to take place. Small, simple processors may only have one (or two) interrupt inputs, so several 
external devices may have to share the interrupt lines of the processor. When an interrupt occurs, 
the processor must check each device to determine which one generated the interrupt. (This can 
also be considered a form of polling.) The advantage of interrupt polling over ordinary polling is 
that the polling occurs only when there is a need to service a device. Polling interrupts is suitable 
only in systems that have a small number of devices; otherwise, the processor will spend too long 
trying to determine the source of the interrupt. 
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Types of interrupts (Hardware interrupts) 
 

• The other technique of servicing an interrupt is by using vectored 
interrupts, by which the interrupting device provides the interrupt 
vector that the processor is to take. Vectored interrupts reduce 
considerably the time it takes the processor to determine the source of 
the interrupt. If an interrupt request can be generated from more than 
one source, it is therefore necessary to assign priorities (levels) to the 
different interrupts. 

 

 

 

 



 

39 

Types of interrupts (Software interrupts) 
 

• A software interrupt is generated by an instruction. It is the 
lowestpriority interrupt and is generally used by programs to request a 
service to be performed by the system software (operating system or 
firmware).  
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CISC and RISC 
 

• There are two major approaches to processor architecture: Complex 

Instruction Set Computer (CISC, pronounced “Sisk”) processors and 

Reduced Instruction Set Computer (RISC) processors. Classic CISC 

processors are the Intel x86and Motorola 68xxx. Common RISC 

architectures are the Freescale/IBM PowerPC, the MIPS architecture, 

the Atmel AVR, and the Microchip PIC. 
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CISC  
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• The realization of the advantages of CISC led to a rethink of processor design. The result was the 
RISC architecture, which has led to the development of very high-performance processors. 

• The basic philosophy behind RISC is to move the complexity from the silicon to the language 
compiler. The hardware is kept as simple and fast as possible. 

• A given complex instruction can be performed by a sequence of much simpler instructions. For 
example, many processors have an xor (exclusive OR) instruction for bit manipulation, and they also 
have a Clear instruction to set a given register to zero. However, a register can also be set to zero by 
xor-ing it with itself. Thus, the separate Clear instruction is no longer required. It can be replaced 
with the already present Xor. Further, many processors are able to clear a memory location directly 
by writing a zero to it. That same function can be implemented by clearing a register and then storing 
that register to the memory location. 

• The instruction to load a register with a literal number can be replaced with the instruction for clearing 
a register, followed by an add instruction with the literal number as its operand. Thus, six instructions 
(xor, clear reg, clear memory, load, store, and add) can be replaced with just three (xor, store, and add). 
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• CISC assembly pseudocode 

clear 0x1000;  clear memory location 0x1000 

load r1, #5;      load register 1 with the value 5 

• RISC assembly pseudocode 

xor r1, r1;            clear register 1 

store r1, 0x1000; clear memory location 0x1000 

add r1 , #5;           load register 1 with the value 5 

 

 

 

• The resulting code size is bigger, but the reduced complexity of the 
instruction decode unit can result in faster overall operation. Dozens 
of such code optimizations exist to give RISC its simplicity. 
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RISC processors have a number of distinguishing characteristics: 

• They have large register sets (in some architectures numbering over 1,000), thereby reducing the 
number of times the processor must access main memory. Often-used variables can be left inside 
the processor, reducing the number of accesses to (slow) external memory. Compilers of high-level 
languages (such as C) take advantage of this to optimize processor performance. 

• By having smaller and simpler instruction decode units, RISC processors have fast instruction 
execution, and this also reduces the size and power consumption of the processing unit. Generally, 
RISC instructions will take only one or two cycles to execute. 

• This is in contrast to instructions for a CISC processor, whose instructions may take many tens of 
cycles to execute. 

• Instructions on a RISC processor have a simple format. All instructions are generally the 
same length (which makes instruction decode units simpler). 
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RISC processors have a number of distinguishing characteristics: 

• RISC processors also often have pipelined instruction execution. This 
means that while one instruction is being executed, the next instruction 
in the sequence is being decoded, while the third one is being fetched. 
At any given moment, several instructions will be in the pipeline and 
in the process of being executed. Again, this provides improved 
processor performance. 

• Due to their low power consumption and computing power, RISC 
processors are becoming widely used. 
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• Memory is used to hold data and software for the processor. 

• There is a variety of memory types, and often a mix is used within a single 
system. 

• Some memory will retain its contents while there is no power, yet will be 
slow to access. 

• Other memory devices will be high-capacity, yet will require additional 
support circuitry and will be slower to access. Still other memory devices 
will trade capacity for speed, yielding relatively small devices, yet will be 
capable of keeping up with the fastest of processors. 
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• Memory chips can be organized in two 
ways, either in word-organized or 
bitorganized schemes. 

• In the word-organized scheme, 
complete nybbles, bytes, or words are 
stored within a single component, 
whereas with bit-organized memory, 
each bit of a byte or word is allocated 

      to a separate component  

Eight bitword-organized -organized 8×18  1 
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Memory chips come in different sizes, with the width specified as part 

of the size description. For instance, a DRAM (dynamic RAM) chip 

might be described as being 4M×1 (bit-organized), whereas a SRAM 

(static RAM) may be 512K×8 (word-organized). In both cases, each 

chip has exactly the same storage capacity, but organized in different 

ways. 

• The common widths for memory chips are x1, x4, and x8, although 
x16 devices are available. A 32-bit-wide bus can be implemented with 
thirty-two x1 devices, eight x4 devices, or four x8 devices. 
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• RAM stands for Random Access Memory. This is a bit of a misnomer, since 
most (all) computer memory may be considered “random access.” 

• RAM is the “working memory” in the computer system. 

• It is where the processor may easily write data for temporary storage. RAM 
is generally volatile, losing its contents when the system loses power. 

• Any information stored in RAM that must be retained must be written to 
some form of permanent storage before the system powers down. 

• RAMs generally fall into two categories: 
1. Static RAM (also known as SRAM). 

2. Dynamic RAM (also known as DRAM). 
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• SRAMs use pairs of logic gates to hold each bit of data. 

• SRAMs are the fastest form of RAM available, require little external 

support circuitry, and have relatively low power consumption. 

• Their drawbacks are that their capacity is considerably less than 

DRAM, while being much more expensive. 

• Their relatively low capacity requires more chips to be used to 

implement the same amount of memory. 
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• DRAM uses arrays of what are essentially capacitors to hold individual bits of data. 

• The capacitor arrays will hold their charge only for a short period before it begins to diminish. 

• Therefore, DRAMs need continuous refreshing, every few milliseconds or so. This perpetual need 
for refreshing requires additional support and can delay processor access to the memory. 

• DRAMs are the highest-capacity memory devices available and come in a wide and diverse variety 
of subspecies. 

• Many processors have instruction and/or data caches , which store recent memory accesses. These 
caches are (often, but not always) internal to the processors and are implemented with fast memory 
cells and high-speed data paths. Instruction execution normally runs out of the instruction cache, 
providing for fast execution. The processor is capable of rapidly reloading the caches from main 
memory should a cache miss occur. Some processors have logic that is able to anticipate a cache 
miss and begin the cache reload prior to the cache miss occurring. Caches are implemented using 
very fast SRAM and are most often used in large systems to compensate for the slowness of 
DRAM. 
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• ROM stands for Read-Only Memory. This is also a bit of a misnomer, since many (modern) ROMs can also be 
written to. 

• ROMs are nonvolatile memory, requiring no power to retain their contents. They are generally slower than RAM, 
and considerably slower than fast static RAM. 

• The primary purpose of ROM within a system is to hold the code (and sometimes data) that needs to be present at 
power-up. Such software is generally known as firmware and contains software to initialize the computer by placing 
I/O devices into a known state. 

• It may contain either a bootloader program to load an operating system off disk. 

• Standard ROM is fabricated (in a simplistic sense) from a large array of diodes. The unwritten bit state for a ROM 
is all 1s, each byte location reading as 0xFF. The process of loading software into a ROM is known as burning the 
ROM. This term comes from the fact that the programming process is performed by passing a sufficiently large 
current through the appropriate diodes to “blow them,” or burn them, thereby creating a zero at that bit location. 
A device known as a ROM burner can accomplish this, or, if the system supports it, the ROM may be programmed 
in-circuit. This is known as In-System Programming (ISP) or, sometimes, In-Circuit Programming (ICP). 

• One-Time Programmable (OTP) ROMs, as the name implies, can be burned once only. Computer manufacturers 
typically use them in systems where the firmware is stable and the product is shipping in bulk to customers. 
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• OTP ROMs are great for shipping in final products, but they are wasteful for 
debugging, since with each iteration of code change, a new chip must be burned 
and the old one thrown away. As such, OTPs make for a very expensive 
development option. No sane person uses OTPs for development work. 

• A (slightly) better choice for system development and debugging is the Erasable 
Programmable Read-Only Memory, or EPROM. Shining ultraviolet light through 
a small window on the top of the chip can erase the EPROM, allowing it to be 
reprogrammed and reused. 

• EPROMs and their equivalent OTP cousins range in capacity from a few kilobytes 
(exceedingly rare these days) to a megabyte or more. 

• The drawback with EPROM technology is that the chip must be removed from 
the circuit to be erased, and the erasure can take many minutes to complete. The 
chip is then inserted into the burner, loaded with software, and then placed back 
in-circuit. This can lead to very slow debug cycles. 
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• EEROM is Electrically Erasable Read-Only Memory, also known as 
EEPROM (Electrically Erasable Programmable Read-Only 
Memory). Very rarely, it is also called Electrically Alterable ReadOnly 
Memory (EAROM). 

• EEROMs can be erased and reprogrammed in-circuit. Their capacity 
is significantly smaller than standard ROM (typically only a few 
kilobytes), and so they are not suited to holding firmware. Instead, 
they are typically used for holding system parameters and mode 
information to be retained during power-off. 
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• Flash is the newest ROM technology and is now dominant. Flash 
memory has the re-programmability of EEROM and the large capacity 
of standard ROMs. 

• Flash is normally organized as sectors and has the advantage that 
individual sectors may be erased and rewritten without affecting the 
contents of the rest of the device. 
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Input/Output 
 

• The address space of the processor can contain devices other than 

memory. 

• These are input/output devices (I/O devices, also known as peripherals 

) and are used by the processor to communicate with the external world. 

• Some examples are serial controllers that communicate with keyboards, 

mice, modems, etc.; parallel I/O devices that control some external 

subsystem; or disk-drive controllers, video and audio controllers, or 

network interfaces. 
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There are three main ways in which data may be exchanged with the external world: 

• Programmed I/O: The processor accepts or delivers data at times convenient to it 
(the processor). 

• Interrupt-driven I/O: External events control the processor by requesting the 
current program be suspended and the external event be serviced. An external 
device will interrupt the processor, at which time the processor will suspend the 
current task (program) and begin executing an interrupt service routine. The service 
of an interrupt may involve transferring data from input to memory, or from memory 
to output. 

• Direct Memory Access (DMA): DMA allows data to be transferred from I/O 
devices to memory directly without the continuous involvement of the processor. 
DMA is used in high-speed systems, where the rate of data transfer is important. 
Not all processors support DMA. 
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DMA is a way of streamlining transfers of large blocks of data between two sections 
of memory, or between memory and an I/O device. Let’s say you want to read in 
100M from disk and store it in memory. You have two options: 

• One option is for the processor to read one byte at a time from the disk controller 
into a register and then store the contents of the register to the appropriate memory 
location. Then the process starts over again for the next byte. 

• The second option in moving large amounts of data around the system is DMA. A 
special device, called a DMA Controller (DMAC), performs highspeed transfers 
between memory and I/O devices. Using DMA bypasses the processor by setting 
up a channel between the I/O device and the memory. Thus, data is read from the 
I/O device and written into memory without the need to execute code to perform 
the transfer on a byte-by-byte. 
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• In order for a DMA transfer to occur, the DMAC must have use of the address 
and data buses. 

• There are several ways in which this could be implemented by the system 
designer. 

• The most common approach (and probably the simplest) is to suspend the 
operation of the processor and for the processor to “release” its buses (the 
buses are tristate). 

• This allows the DMAC to “take over” the buses for the short period required 
to perform the transfer. 

• Processors that support DMA usually have a special control input that enables 
a DMAC (or some other processor) to request the buses. 
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• There are four basic types of DMA: 

• Standard block transfer: Accomplished by the DMA controller 
performing a sequence of memory transfers. The transfers involve a 
load operation from a source address followed by a store operation to a 
destination address. Standard block transfers are initiated under 
software control and are used for moving data structures from one 
region of memory to another. 

• Demand-mode transfers: Similar to standard mode except that the 
transfer is controlled by an external device. Demand-mode transfers are 
used to move data between memory and I/O or vice versa. The I/O 
device requests and synchronizes the movement of data. 
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• Fly-by transfer: Provides high-speed data movement in the system. Instead of using 
multiple bus accesses as with conventional DMA transfers, fly-by transfers move data from 
source to destination in a single access. The data is not read into the DMAC before going 
to its destination. During a fly-by transfer, memory and I/O are given different bus control 
signals. For example, an I/O device is given a read request at the same time that memory is 
given a write request. Data moves from the I/O device straight into the memory device. 

• Data-chaining transfers: Allow DMA transfers to be performed as specified by a linked-
list in memory. Data chaining is started by specifying a pointer to a descriptor in memory. 
The descriptor is a table specifying byte count, source address, destination address, and a 
pointer to the next descriptor. The DMAC loads the relevant information about the transfer 
from this table and begins moving data. The transfer continues until the number of bytes 
transferred is equal to the entry in the byte-count field. On completion, the pointer to the 
next descriptor is loaded. 
This continues until a null pointer is found. 
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Cache Memory 
 

• Cache: The small section of SRAM memory, added between main memory and 
processor (CPU) to speed up the process of execution, is known as cache memory. 
It is a high speed & expensive memory. 

• Caches are divided into blocks, which may be of various sizes, The number of 
blocks in a cache is usually a power of 2. 

• Cache hit ratio: It measures how effectively the cache fulfills the request for getting 
content. If data has been found in the cache, it is a cache hit else a cache miss. Cache 
hit ratio = No. of cache hits / (No. of cache hits + No. of cache Miss). 

 

Cache Memory 
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Cache Memory 
 

• Cache Mapping: The process /technique of bringing data of main memory blocks 
into the cache block is known as cache mapping. The mapping techniques can be 
classified as: 

1. Associative Mapping. 

2. Direct Mapping. 

3. Set-Associative Mapping. 
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Cache Memory(Associative Mapping) 
 

•  Here the mapping of the main memory block can be done with any of the cache block. The memory 
address has only 2 fields here: tag & word. This technique is called as fully associative cache 
mapping. 

•  The associative memory stores both the address and content (data) of the memory word 

•  If the address is found, the corresponding data bits is read and sent to the CPU. If no match occurs, the main 
memory is accessed for the word. 

 

Associative cache Mapping (all numbers in Hex) 

Tag Word 

Address Data 

013A 3871 

0CB1 FF12 

2239 FE45 
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Cache Memory(Associative Mapping) 
 

• Example: If we have a fully associative mapped cache of 8 KB size with block size = 

128 bytes and say, the size of main memory is = 64 KB. Then: 

• Number of bits for the physical address = 16 bits (as memory size = 64 KB = 26 × 210 = 216) 

• Number of bits in block (word) offset = 7 bits (as block size = 128 bytes = 27) 

• No of tag bits = Number of bits for the physical address – Number of bits in block offset 

= 16-7 = 9 bits 

• No of cache Blocks = Cache size/block size = 8 KB / 128 Bytes = 8×1024 Bytes/128 

Bytes = 26 blocks. 

Tag Word 
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• Associative memories are expensive compared to random-access memories because 
of the added logic associated with each cell. 

• Direct Mapping: Each block from main memory has only one possible place in the 
cache organization in this technique. For example: every 
block i of the main memory can be mapped to block j of 
the cache using the formula: j = i modulo m 

Where: i = main memory block number. j = 

cache block number. 

m = number of blocks in the cache.  

• One way to figure out which cache block a particular 

memory address should go to is to use the mod (remainder) operator. 

Direct Mapping 
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• We need to add tags to the cache, which supply the rest of the address bits to let 
us distinguish between different memory locations that map to the same cache 
block. The address here is divided into 3 fields: Tag, Block & Word. 

• The number of bits in the Block & Word field is equal to the number of bits in the 
index fields. 

• The number of bits in the index field 
is equal to the number of address bits 

required to access the cache memory. 

Direct Cache Mapping 
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• Now we can tell exactly which addresses of main memory are stored in the 
cache, by concatenating the cache block tags with the block indices. 

Direct Cache Mapping 

• To map the memory address to cache: The BLOCK field of the address is used 
to access the cache’s BLOCK. Then, the tag bits in the address is compared 
with the tag of the block. For a match, a cache hit occurs as the required word 
is found in the cache. Otherwise, a cache miss occurs and the required word 
has to be brought into the cache from the Main Memory. The word is now 
stored in the cache together with the new tag (old tag is replaced). 



Cache Memory(Direct Mapping)  

69 

• Example: If we have a fully associative mapped cache of 8 KB size with block 
size = 128 bytes and say, the size of main memory is = 64 KB. (Assuming word 
size = 1 byte) Then :  

• Number of bits for the physical address = 16 bits (as memory size = 64 KB  

= 26 × 210 = 216) 
Number of bits for Word = 7 bits (as block size = 128 bytes = 27) 
No of Index bits = 13 bits (as cache size = 8 KB = 23 × 210 = 213) 
No of Block bits = Number of Index bits- Number of bits for Word = 13 – 7 = 6bits 

• OR 
(No of cache Blocks = Cache size/block size = 8 KB / 128 Bytes = 8×1024 
Bytes/128 Bytes = 26blocks → 6bits) 
• No of Tag bits = Number of bits for the physical address — Number of bits in 

Index = 16-13 = 3 bits 
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• The disadvantage of direct mapping is that two words with the same index in their address but 
with different tag values cannot reside in cache memory at the same time. 

• It is the combination of advantages of both direct & associative mapping. 
Here, the cache consists of a number sets, each of which consists of a number of blocks. The 
relationships are : n = w * L 

i = j modulo w 
where   i : cache set number. 

j : main memory block number.n : number of 
blocks in the cache. 

w : number of sets. 

L : number of lines in each set. 

 

The memory address has only 3 fields here: word & set & tag. 
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Tag Set Word 

• This is referred to as L-way set-associative mapping. Block Bj can be 
translated into any of the blocks in set j using this mapping. 

 

                                                          Set-Associative Cache Mapping  
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Tag Set Word 

• To map the memory address to cache: Using set field in the memory 

address, we access the particular set of the cache. Then, the tag bits in 

the address are compared with the tag of all L blocks within that set. For 

a match, a cache hit occur as the required word is found in the cache. 

Otherwise, a cache miss occurs and the required word has to be brought 

in the cache from the Main Memory. According to the replacement 

policy used, a replacement is done if the cache is full. 
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Tag Set Word 

• Example1: If we have a fully associative mapped cache of 8 KB size with block 
size = 128 bytes and say, the size of main memory is = 64 KB, and we have “2-
way” set-associative mapping (Assume each word has 8 bits). Then : 

• Number of bits for the physical address = 16 bits (as memory size = 64 

KB = 26 * 210 = 216) 

• No of cache Blocks = Cache size/block size = 8 KB / 128 Bytes = 8×1024 Bytes/128 
Bytes = 26 cache blocks. 

• No of Main Memory Blocks = MM size/block size = 64 KB / 128 Bytes = 64×1024 
Bytes/128 Bytes = 29 MM blocks. 

No of sets of size 2 = No of Cache Blocks/ L = 26/2 = 25 cache sets. (L 

= 2 as it is 2-way set associative mapping) 
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Tag Set Word 

• Example2: On a computer with a 32-bit memory address and the length of the 
memory location of 1 byte is installed set-associative cache. Cache size is 16 KB, 
block (line) size is 16 Bytes, set associative cache is 4-way. 

• How many sets are there in cache? M=16KB= 24 KB= 214B , block=B=16B= 24 B, 
E=4= 22 , S=M÷(E×B)=214÷(24×22)= 214-6 = 28=256 sets. 

• Which bits in the memory address determine the address of the set? Address bits of 
set: 4-11. 

31                                                         12 11                                   4  3                                                      0 

 address of the set  address of the location in the block  

• Into which set is mapped the content of the memory address 10FFCFF(HEX)? 

00000001000011111111110011111111, Address belongs to set 207.  
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Cache Memory 
 

 

Associative Mapping 

 

Direct-mapping Set-Associative Mapping 

Advantages 

• It is fast. 

• Easy to implement. 

• 

• 

• 

Simplest type of mapping 

Fast as only tag field 

matching is required while 

searching for a word. 

It is comparatively less 

expensive than associative 

mapping. 

• It gives better performance 

than the direct and 

associative mapping 

techniques. 

Disadvantages • Expensive because it 

needs to store address 

along with the data. 

• It gives low performance 

because of the 

replacement for data-tag 

value. 

• It is most expensive as with 

the increase in set size cost 

also increases. 
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• The traditional architecture for computers follows the conventional, 
Von Neumann serial architecture. 

• Computers based on this form usually have a single, sequential 
processor. 

• The main limitation of this form of computing architecture is that the 
conventional processor is able to execute only one instruction at a time. 

• Algorithms that run on these machines must therefore be expressed as 
a sequential problem. 

• A given task must be broken down into a series of sequential steps, each 
to be executed in order, one at a time. 
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• Many problems or large data set that are computationally intensive are 
also highly parallel. 

• Thus, speed advantages may be gained from performing calculations in 
parallel for each element in the data set, rather than sequentially moving 
through the data set and computing each result in a serial manner. 

• A coarsely grained machine has relatively few processors, whereas a 
finely grained machine may have tens of thousands of processing 
elements. 

• There are several different forms of parallel machine. Each architecture 
has its own advantages and limitations. 
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• SIMD computers: Single-Instruction Multiple-Data (SIMD) computers are highly parallel machines, employing large arrays 
of simple processing elements. 

• In an SIMD machine, each processing element has a small amount of local memory. 

• The instructions executed by the SIMD computer are broadcast from a central instruction server to every processing element 
within the machine. 

• In this way, each processor executes the same instruction as all other processing elements within the machine. 

• Since each processor executes the instruction on its local data, all elements within the data structure are worked upon 
simultaneously. 

• The primary advantage of the SIMD machine is that simple and cheap processing elements are used to form the computer.  

• In addition, since each processor is executing the same instructions and therefore sharing a common instruction fetch, the 
architecture of the machine is somewhat simpler. Only one instruction store is required for the entire computer. 

• The use of multiple processing elements, each executing the same instructions in unison, is also the SIMD’s main 
disadvantage. Many problems do not lend themselves to being broken down into a form suitable for executing on an SIMD 
computer. 
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• MIMD computers: The other major form of parallel machine is the Multiple-

Instruction Multiple-Data (MIMD) computer. 

• These machines are typically coarsely grained collections of 

semiautonomous processors, each with their own local memory and local 

programs. 

• An algorithm being executed on an MIMD computer is typically broken up 

into a series of smaller sub-problems, each executed on a processor of the 

MIMD machine. 

• By giving each processing element in the MIMD machine identical programs 

to execute, the MIMD machine may be treated as an SIMD computer. 

• MIMD computers tend to use a smaller number of very powerful processors, 

rather than a large number of less powerful ones. 
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• MIMD computers can be of one of two types: shared-memory MIMD and 
messagepassing MIMD . 

• Shared-memory MIMD systems have an array of
 high-speed processors, each with local 
memory or cache, and each with access to a large, 
global memory. 

• The global memory contains the data and programs to 
be executed by the machine. Also in this memory is a 
table of processes (or subprograms) awaiting 
execution. 

• Each processor will fetch a process and 
associated data into its local memory or cache and 
will run semi-autonomously of the other processors
 in the system. Process communication also takes 
place through the global memory. 

Shared-memory MIMD  
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• A speed advantage is gained by sharing the program among several, powerful 
processors. However, logic within the 
system must arbitrate between processors for
 access to the shared memory and 
associated shared buses of the system. 

• In addition, allowances must be made for a 
processor attempting to access data in 
global memory that is out of date. If processor
 A reads a processand data structure into
 its local memory and subsequently 
modifies that data structure, 

processor B attempting to access the same data 
structure in main memory must be notified that 
a more recent version of the data structure exists. 

Shared-memory MIMD 
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• An alternative MIMD architecture is that of 
the message-passing MIMD computer. In this 
system, each processor has its own local, main 
memory. 

• No global memory exists for the machine. 

• Each processing element (processor with local 
memory) either loads, or has loaded into it, the 
programs (and associated data) that it is to execute. 

• Each process runs autonomously on its local 
processor, and interprocess communication is 

achieved by message-passing through a common 
medium. The processors may communicate 
through a single, shared bus. 
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• Such machines do not suffer the bus-contention 
problems of shared-memory machines. 

• However, the most effective and efficient means of 
interconnecting the processing nodes of a message-passing 
MIMD machine is still a major area of research. 

• Problems that require only a limited amount of interprocess 
communication may work effectively on a machine without 
high interconnectivity, whereas other applications may 
weigh down the communications medium with their 
message passing. If a percentage of a processing node’s time 
is spent in messagerouting for its neighbors, a machine with 

a high degree of interprocess communication but 
a low degree of interconnectivity may spend 
most of its time dealing in message passing, with 
little time spent on actual computation. 
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• The ideal interconnection architecture is that of 
the fully interconnected system, where every 
processing node has a direct communications 
link with every other processing node. 

However, this is not always practical, due to the costs 
and logistics of such a high degree of 
interconnectivity. A solution to this problem is to 
provide each processing element in the machine with 
a limited number of connections, based on the 
assumption that a processing element will not need or 
be able to communicate with every other processing 
element in the machine simultaneously. These limited 
connections from each processing node may then be 
interconnected using a crossbar switch , thereby 
providing full interconnectivity for the machine 
through only a limited number of links per node. 


